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Abstract—Heart failure (HF) is a major contributor to
in-hospital mortality among ICU patients, highlighting
the potential need for effective early warning systems.
This applied body of work utilizes the MIMIC-IV data-
base to predict in-hospital mortality for ICU patients
diagnosed with HF, using only the first 48 hours of
data post-ICU-admission to simulate an early warning
model. Three datasets were constructed: static patient
information, temporal events data (including labs, weight,
and vasoactive agents), and bedside monitoring vitals
aggregated at 5-minute intervals. A machine learning ap-
proach (logistic regression) and various implementations
of a deep learning approach, a multi-layer perceptron
(MLP), were implemented and evaluated across different
data integration levels, attempting to build a multi-modal
model utilizing all three datasets. Model performance
was assessed using metrics like ROC-AUC and F1-score.
Results indicate that logistic regression performs well
initially and on the isolated datasets. However, the deep
learning approaches became much more relevant when
integrating multiple data sources. The highest performing
model was the MLP utilizing all three sources. This
demonstrates the potential of deep learning models in
enhancing early mortality prediction for HF patients in
the ICU, particularly with large, multi-modal datasets.
These preliminary findings may support the development
of scalable, data-driven early warning systems aimed at
improving clinical decision-making and patient outcomes
in critical care settings.

I. Important Notes

A. Limited Scope
Due to the project’s scaled-back scope, this summary
report does not include an extensive background liter-
ature review, though the data and its seminal paper
and other works that influenced this research are cited
throughout.

Rather, this paper focuses directly on the dataset cre-
ation, data processing, and modeling methodologies

employed to predict in-hospital mortality for ICU pa-
tients with a heart failure (HF) diagnosis.

II. Introduction

A. Objectives
The primary objective of this work is to develop an
exploratory deep learning model aimed at serving as an
early-warning indicator for in-hospital mortality for ICU
patients diagnosed with Heart Failure (HF). Utilizing
the initial 48 hours of patient demographic and clinical
data, this model will determine a positive or negative
indication for mortality later in the hospital stay.

This work will also evaluate the impact of progres-
sively integrating the three disparate data sources ex-
tracted for this model (static demographics, aggregated
event data, and flattened vitals) on mortality prediction
performance.
B. MIMIC-IV Database Overview
The Medical Information Mart for Intensive Care IV
(MIMIC-IV) is a publicly accessible electronic health
record (EHR) database that encompasses comprehensive
clinical data from patients admitted to the Beth Israel
Deaconess Medical Center in Boston, Massachusetts.
Covering admissions from 2008 to 2019, MIMIC-IV in-
cludes detailed information such as demographics, vital
signs, laboratory test results, medications, and clinical
notes. This dataset supports a wide range of research
applications, including epidemiological studies, clinical
decision support development, and machine learning
model training. MIMIC-IV enhances its predecessors by
adopting a more modular data structure and facilitating
the integration of new and disparate data sources. [1]

The version used for this research is version 2.2,
accessed via Google BigQuery. [2]
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III. Data Extraction and Integration

The datasets used in this body of work were created by
querying the MIMIC-IV database via Google BigQuery,
containing the de-identified health records of ICU pa-
tients as described above. Data extraction was tailored to
the research objectives, focusing on ICU patients diag-
nosed with heart failure via ICD-9 and ICD-10 codes
and capturing relevant information within the first 48
hours of ICU admission to support the objective of early
mortality prediction.

Three SQL queries were developed to extract data
from different perspectives:
A. Queries

1) Static Patient Data
This query retrieved demographic and static clinical
attributes that provide foundational context about the
patient’s baseline characteristics and health history,
forming the static dataset.

2) Bedside Monitoring Vitals
This query focused on high-frequency time-series data,
such as heart rate, blood pressure, respiratory rate, and
oxygen saturation, collected through bedside monitoring
equipment. The data were subsequently aggregated into
5-minute intervals to reduce granularity while retaining
meaningful trends and variability. It is worth noting that
HF is a slow-moving condition in terms of clinical mon-
itoring data. This dataset provides continuous insights
into a patient’s current physiological state.

3) Temporal Events
The temporal events query extracted time-stamped event
data, such as laboratory test results, weight measure-
ments, and vasoactive agent administrations. These
features represent key clinical interventions and mea-
surements recorded during the ICU stay, aggregated
and aligned to complement the static data. This dataset
captures critical changes in a patient’s condition over
time.

B. Data Integration
The extracted datasets were created with the ability to
be joined using stay_id, a unique identifier for ICU
admissions, to create a methodology for analysis. Tem-
poral datasets (events and vitals) were aligned to ensure
consistency within the first 48 hours of ICU admission,
and static patient data provided a stable reference across
all analyses.

C. Features
The features encompassed by each dataset are listed in
the following tables below:

TABLE I: Static Patient Data Features

Feature Description
stay_id ICU stay identifier (unique across all records)
gender Patient gender
age Patient age at admission
race Patient self-reported race
marital_status Patient self-reported marital status
admission_type Admission class (e.g. Emergency)
admission_location Source of admission (e.g. Referral)
hours_to_icu Time in hours after hosp. adm. to ICU adm.
prior_hospital_admissions Total admissions. before current
prior_icu_admissions Total ICU admissions before current
ace_inhibitors_flag Prescription med. indicator
arbs_flag Prescription med. indicator
arnis_flag Prescription med. indicator
beta_blockers_flag Prescription med. indicator
loop_diuretics_flag Prescription med. indicator
thiazide_diuretics_flag Prescription med. indicator
sglt2_inhibitors_flag Prescription med. indicator
mras_flag Prescription med. indicator
hospital_expire_flag Target feature - Mortality indicator

TABLE II: Bedside Monitoring Vitals Features

Feature Description
stay_id ICU stay identifier (unique across all records)
charttime Timestamp of measurement
heart_rate Heart rate of patient
systolic_bp Systolic blood pressure of patient
diastolic_bp Diastolic blood pressure of patient
mean_bp Mean of blood pressure measurements
respiratory_rate Respiratory rate of patient
spo2 Blood oxygen saturation of patient

TABLE III: Temporal Events Features

Feature Description
stay_id ICU stay identifier (unique across all records)
timestamp Timestamp of event (Chart time, lab time, etc.)
event_type One of: lab, weight, or vasoactive agent
variable_name Specific measurement (e.g. Phenylephrine)
value Float value of the measurement

IV. Data Processing

The data processing workflow focused on preparing the
three extracted datasets—static patient data, time-series
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vitals data, and temporal events data—for predictive
modeling. The goal was to ensure quality, consistency,
and alignment across the datasets while handling out-
liers, missing values, and feature engineering.
A. Static Patient Data
Static patient data included demographics, comorbidi-
ties, and admission details. Patients who spent more
than 30 days in a standard ward before ICU admission
were excluded as outliers. Only stay_ids shared
across all datasets were retained. Features such as
gender and race were simplified and encoded, with
race categories grouped into the broader categories
defined within the data, such as “White,” “Black/
African,” and “Hispanic/Latino.” One-hot encoding was
applied to categorical features, and boolean columns
were converted to binary integers. The target variable,
hospital_expire_flag, showed a 12% mortality
rate, highlighting a significant class imbalance, which
will be covered in greater detail further on.
B. Bedside Monitoring Vitals
Vitals were resampled to 5-minute intervals and inter-
polated to handle missing values. Patients with fewer
than 6 hours of data (72 records) or entirely missing
data for any vital sign were excluded. Temperature was
dropped due to inconsistent availability. The cleaned
dataset retained sufficient coverage of key vitals, such as
blood pressure, respiratory rate, and oxygen saturation.
C. Temporal Events
Event-based clinical data were aggregated using statis-
tical functions (mean, median, min, max) for each
variable grouped by stay_id. Features with a missing
ratio exceeding the majority class ratio were dropped,
while the remaining features were imputed using medi-
ans and enhanced with binary missingness indicators,
as the lack of information can be equally informative in
some cases. These missingness indicators were inspired
by the indicator vector for padded values described by
research of deep learning applications for long-term HF
patient mortality prediction for MIMIC-III. [3]

V. Modeling Methodology

A. Models Implemented
Two primary models were implemented at each level of
data integration of the three datasets:

1) Logistic Regression (Baseline)
Used as a straightforward, linear baseline, including
class-weight adjustments for imbalance.

2) Multilayer Perceptron (MLP) Neural Network:

A feedforward neural network with several dense layers,
batch normalization, dropout, and a focal loss function
to address class imbalance.

B. Addressing Class Imbalance
As noted, the dataset exhibited a severe class imbal-
ance, with the positive (mortality) class comprising only
12.8% of the population. This skewed distribution can
lead predictive models to inordinately favor the majority
class, resulting in low recall for the minority outcome
and in this case, underestimation of the in-hospital mor-
tality events. The imbalance influenced both modeling
decisions and evaluation strategies. For instance, simple
accuracy metrics became less informative, prompting the
use of performance measures sensitive to minority class
detection, such as minority F1-score and ROC-AUC.
Additionally, specialized modeling techniques were em-
ployed to mitigate this imbalance. Logistic regression
models incorporated class-weight adjustments, and the
MLP neural network implemented Focal Loss [4] to
emphasize harder-to-classify minority examples. These
choices were made to try to ensure that improvements
reflected an actual increase in sensitivity rather than
a mere optimization on the overwhelmingly dominant
class.
C. On Focal Loss
Focal Loss is a modified form of cross-entropy loss
designed to address class imbalance by downweighting
easy, correctly classified examples. It introduces a focus-
ing parameter γ (gamma) that adjusts the rate at which
easy examples are discounted, and an α (alpha) para-
meter to weight classes differently. This encourages the
model to pay more attention to hard-to-classify minority
instances. [4]
D. Data Integration Levels
Static Only: The model inputs consist solely of patient-
level static features (demographics, admission details,
etc.).

Static + Aggregated Events: In addition to the static
features, this level incorporates aggregated event-based
features. This merging includes statistical summaries
(mean, median, etc.) of temporal event data to enhance
static inputs.

Full Integration (Static + Aggregated Events + Flattened
Vitals): The static and event-based features are further
combined with flattened, time-aggregated vital sign
statistics. This produces a richer feature set blending
demographic, event, and physiological signals.
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Fig. 1: Neural network architecture of the Full Integration MLP
model.

E. Training and Evaluation
All models were trained using a standard train-test split.
As all features were converted to numeric format, they
are all scaled with StandardScaler, ensuring that
scaling is performed after the split to mitigate potential
for data leakage. The logistic regression provided a
baseline for each integration level. The MLP network,
trained with the Adam optimizer and a chosen learning
rate (scheduled LR for the full integration level), incor-
porated Focal Loss to more effectively handle the severe
class imbalance. Evaluation metrics included ROC-
AUC, F1-score, and confusion matrices, focusing on
improvements from baseline (logistic regression) to the
more flexible MLP model as additional data integration
strategies were iteratively introduced.

VI. Results

A. Performance Comparison
Static Only:

• Logistic Regression: Achieved a moderate balance
(minority-class F1  0.34) and ROC-AUC of 0.7573.

• MLP: Displayed high specificity but poor sensi-
tivity, resulting in a very low minority-class F1
( 0.04). ROC-AUC was 0.7494.

Static + Aggregated Events:
• Logistic Regression: Substantial improvement in

minority-class recognition (F1   0.47) and ROC-
AUC of 0.8516.

• MLP: Again showed strong majority-class perfor-
mance but limited gains in minority detection
(ROC-AUC: 0.7427).

Full Integration (Static + Aggregated Events + Flattened
Vitals):

• Logistic Regression: Further enhanced minority-
class detection (F1  0.49) and an improved ROC-
AUC of 0.8730.

• MLP (0.5 Threshold): Markedly improved perfor-
mance, achieving a minority-class F1 of 0.50 and
ROC-AUC of 0.8786.

• MLP (Optimized Threshold): With threshold tun-
ing, the MLP demonstrated its best balance,
improving the minority-class F1 to 0.58 while
maintaining a strong ROC-AUC of 0.8786. See
Fig. 2 for ROC curve and Fig. 3 for a threshold
classification comparison via confusion matrices
(next page).

More complete performance details can be found in
Table IV.

Results continue on the next page.
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Fig.  2: The receiver operating characteristic (ROC) curve for the
MLP tuned for the optimal threshold via precision-recall perfor-
mance, showing a high degree of distinguishability between positive
and negative classes.

B. Key Findings
• Adding event-based and physiological features (full

integration) consistently improved baseline logistic
regression and MLP models’ ability to identify the
minority class.

• While the MLP struggled with minority detection
in less integrated scenarios, fully integrated data
and threshold calibration yielded the strongest
overall performance. It is important to note that the
lower integration levels did not receive the same
degree of attention to MLP minority classification
performance, merely overall performance.

• The best result was achieved by the fully integrated
MLP with an optimized threshold, offering a well-
rounded improvement in both discriminatory power
(high ROC-AUC) and minority-class F1-score.

• These findings highlight the relevance of additional
feature integration and post-hoc calibration in ad-
dressing class imbalance challenges.

VII. Discussion

A. On the Final Model (Optimized Full-Integration
MLP)
This model is the best of the attempts at overcoming a
significant challenge (RE: class imbalance). It correctly
identifies the majority of patients at risk of mortality,
capturing about 6 in 10 of those who will not survive
while maintaining strong accuracy overall (89%). In
practice, a model such as this, developed and deployed
with careful consideration, could offer clinicians a

valuable early-warning tool, highlighting most high-risk
patients early on with relatively few unnecessary alarms.
B. Balancing Clinical Relevance and Predictive Perfor-
mance
While these results indicate that logistic regression pro-
vides a strong baseline and that deep learning models
can excel when leveraging the more extensive multi-
modal data, it’s crucial to interpret these outcomes with
patient care in mind. Traditional metrics like ROC-
AUC and overall accuracy confirm a model’s capacity to
distinguish between classes, but they do not ensure clin-
ically meaningful performance by default. When high
specificity comes at the cost of missing a large fraction
of critically ill patients, the model’s predictive power
becomes less useful in a real-world setting. For example,
the left panel in Fig. 3 shows the final, full-integration
MLP model at its default classification threshold of 0.5.
Of 367 true mortality cases, only 144 were detected at
this threshold for a recall of 0.39. If 61% of mortality
cases are not flagged by the model, then even a seem-
ingly strong ROC-AUC has limited practical value.
C. Importance of Sensitivity and Specificity
Sensitivity and specificity are essential metrics in this
clinical context. Sensitivity (true positive rate) measures
how well the model identifies patients who will not
survive, while specificity (true negative rate) reflects
how many stable patients are correctly identified as such.
Striking the right balance between these two is para-
mount: a high-sensitivity, moderate-specificity model
might be acceptable in a life-or-death scenario, ensuring
that most patients at risk receive timely intervention
—even if it means some false positives. Conversely, a
highly specific model that misses a large portion of
at-risk patients may fail to deliver meaningful clinical
benefit.
D. Future Efforts
Future efforts should focus on refining model calibra-
tion even further, exploring advanced architectures,
and integrating new data modalities that may further
enhance model sensitivity without the real-world down-
stream potential of overwhelming clinical staff with false
alarms. Threshold tuning and loss function adjustments
like Focal Loss can and did help align these predictive
models more closely with hypothetical clinical priorities,
and further improvements such as prospective validation
would benefit an in actu deployment of such a system.
Ultimately, the goal is to create decision support systems
that not only achieve predictive prowess, but also con-
tribute to improving patient outcomes in the intensive
care unit setting.
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Fig. 3: Comparison of confusion matrices for the default classification threshold (0.5) and the tuned optimal threshold. The left panel uses
the default threshold, showing lower sensitivity to the minority class, while the right panel applies the optimized threshold derived from
the precision-recall curve, improving minority class detection and overall performance.

TABLE IV: Model Performance Comparison

Integration Level Model Minority F1 ROC-AUC
Static Only Logistic Regression 0.34 0.7573
Static Only MLP (Thresh. 0.5) 0.04 0.7494
Static + Aggregated Events Logistic Regression 0.47 0.8516
Static + Aggregated Events MLP (Thresh. 0.5) 0.07 0.7427
Full Integration Logistic Regression 0.49 0.8730
Full Integration MLP (Thresh. 0.5) 0.50 0.8786
Full Integration MLP (Thresh. Optimized) 0.58 0.8786
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